首页> 外文OA文献 >Efficient convolutional neural networks for pixelwise classification on heterogeneous hardware systems
【2h】

Efficient convolutional neural networks for pixelwise classification on heterogeneous hardware systems

机译:高效的卷积神经网络在异构硬件系统上按像素分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

With recent advances in high-throughput Electron Microscopy (EM) imaging it is now possible to image an entire nervous system of organisms like Drosophila melanogaster. One of the bottlenecks to reconstruct a connectome from these large volumes (approx. 100 TiB) is the pixel-wise prediction of membranes. The time it would typically take to process such a volume using a convolutional neural network (CNN) with a sliding window approach is in the order of years on a current GPU. With sliding windows, however, a lot of redundant computations are carried out. In this paper, we present an extension to the Caffe library to increase throughput by predicting many pixels at once. On a sliding window network successfully used for membrane classification, we show that our method achieves a speedup of up to 57x, maintaining identical prediction results.
机译:随着高通量电子显微镜(EM)成像的最新进展,现在可以对果蝇(Drosophila melanogaster)等生物的整个神经系统成像。从这些大体积(约100 TiB)重建连接体的瓶颈之一是膜的像素级预测。在当前的GPU上,使用带滑动窗口方法的卷积神经网络(CNN)处理此类体积通常需要花费数年的时间。但是,对于滑动窗口,将执行许多冗余计算。在本文中,我们提出了对Caffe库的扩展,以通过一次预测许多像素来提高吞吐量。在成功用于膜分类的滑动窗口网络上,我们证明了我们的方法可实现高达57倍的加速,并保持相同的预测结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号